

What is a pharmacophore?

• the portion of drug molecule required for pharmacological activity

What is a pharmacophore?

• the portion of drug molecule required for pharmacological activity

Drug-Targets

- Receptors
- Enzymes
- Membrane Transporters

Fentanyl: Targets

- Pharmacological targets
 - Opioid receptors
 - · Members of the GPCR family
 - Mu, delta, and kappa
 - » $\mbox{ }\mbox{ }\m$
 - » Inhibition AC, voltage-gated Ca²⁺ channels
 - » Activation of MAPK, inwardly rectifying K⁺ (GIRK) channels
 - Results in decreased neurotransmitter release and inhibition of neuronal firing

7

Functional Groups

- In a chemical sense, a drug can be described as a core scaffold decorated by functional groups
- Functional groups provide HBD, HBA and may increase lipophilicity

The Pharmacophore Rule

The Pharmacophore Rule was written so chemists would be able to identify the basic structural elements required for a compound to bind to the cannabinoid structure.

Application of Pharmacophores to the Synthetic Cannabinoids

Receptor Binding Chemical Analog CB1 Ki (nM) CB2 Ki (nM) JWH-018 9.0 (least potent) 2.9 AM2201 1.0 2.6 JWH-081 1.2 12.4 (least potent) JWH-122 0.69 1.2 JWH-210 0.46 (most potent) 0.69 (most potent) Aung, M.M. et al., Drug and Alcohol Dependence, 2000. 60(2): p. 133-140. Huffman, J. W., et al. Bioorganic & medicinal chemistry, 2005. 13(1), 89-112. Makriyannis A. and Deng H. Patent: Cannabimimetic Indole Derivatives (2008)

Fentanyl: Legal Updates • Expansion of the "pharmacophore rule" Ohio Administrative Code 4729-11-02

Fentanyl: Opioid Pharmacophore

 \bullet Highlighted structure present in $\mu\text{-}$ receptor binders:

Fentanyl: Opioid Pharmacophore

- Binding to the mu receptor requires the following:
 - 1. protonated amine nitrogen
 - 2. polar function for hydrogen bonding
 - 3. one aromatic ring for lipophilic interaction
 - 4. another aromatic ring for electron transfer

Dosen-Micovic et al., 1996

Fentanyl: Legal Updates

- Expansion of the "pharmacophore rule"
- Required structural components:
- Chemical scaffold consisting of a Nitrogen containing 5, 6 or 7 member ring and;

Fentanyl: Legal Updates

- Expansion of the "pharmacophore rule"
- 2. A second Nitrogen attached to the ring structure

Fentanyl: Legal Updates

- Expansion of the "pharmacophore rule"
- 3. A polar group attached to the chemical scaffold

Fentanyl: Legal Updates

- Expansion of the "pharmacophore rule"
- 4. An alkyl or aryl substitution attached to the chemical scaffold

Cyclopropyl fentanyl

para-Fluorobutyryl fentanyl

Furanyl fentanyl O N

DEA Requirements

- A. Replacement of the phenyl portion of the phenethyl group by any monocycle, whether or not further substituted in or on the monocycle;
- B. Substitution in or on the phenethyl group with alkyl, alkenyl, alkoxyl, hydroxyl, halo, haloalkyl, amino or nitro groups

DEA Requirements

- Substitution in or on the piperidine ring with alkyl, alkenyl, alkoxy, ester, ether, hydroxyl, halo, haloalkyl, amino, or nitro groups;
- Replacement of the aniline ring with any aromatic monocycle whether or not further substituted in or on the aromatic monocycle; and/or
- E. Replacement of the N-propionyl group by another acyl group

General References

- 1. Alexandros Makriyannis and Hongfeng Deng. Patent: Cannabimimetic Indole Derivatives (2008).
- Aung, M.M., G. Griffin, J.W. Huffman, M.J. Wu, C. Keel, B. Yang, V.M. Showalter, M.E. Abood, and B.R. Martin, Influence of the N-1 alkyl chain length of cannabimimetic indoles upon CB1 and CB2 receptor binding. Drug and Alcholo Dependence, 2000. 60(2): p. 133-140.
- Dosen-Micovic, I. Roglic, G., Micovic, V., Ivanovic, M. Conformational study of fentanyl and its analogs 1. Conformational space of the N-phenethyl substituent. Elec J Theoretical Chem. 199-210; 1996.
- Huffman, J. W., Zengin, G., Wu, M., Lu, J., Hynd, G., Bushell, K., et al. (2005). Structure-activity relationships for 1-alkyl-3-(1-naphthoyl)indoles at the cannabinoid CB(1) and CB(2) receptors: steric and electronic effects of naphthoyl substituents. New highly selective CB(2) receptor agonists. Bioorganic & medicinal chemistry, 13(1), 89-112. doi: 10.1016/j.bmc.2004.09.050.
- Jordon, A. M.; Roughley, S.D. Drug discovery chemistry: a primer for the non-specialist. Drug Discovery Today. 14:731-744; 2009.
- Worst TJ, Sprague JE. The "pharmacophore rule" and the spices. Forensic Toxicol. 33(1):170-173; 2015.
- 8. Federal Register. Vol. 83(25): 5188-5192; 2018.